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Abstract
Heterosis, also known as hybrid vigor, is widely used in aquaculture, but the molecular causes for this phenomenon remain 
obscure. Here, we conducted a transcriptome analysis to unveil the gene expression patterns and molecular bases underlying 
thermo-resistant heterosis in Crassostrea gigas ♀ × Crassostrea angulata ♂ (GA) and C. angulata ♀ × C. gigas ♂ (AG). 
About 505 million clean reads were obtained, and 38,210 genes were identified, of which 3779 genes were differentially 
expressed between the reciprocal hybrids and purebreds. The global gene expression levels were toward the C. gigas genome 
in the reciprocal hybrids. In GA and AG, 95.69% and 92.00% of the differentially expressed genes (DEGs) exhibited a non-
additive expression pattern, respectively. We observed all gene expression modes, including additive, partial dominance, 
high and low dominance, and under- and over-dominance. Of these, 77.52% and 50.00% of the DEGs exhibited under- or 
over-dominance in GA and AG, respectively. The over-dominance DEGs common to reciprocal hybrids were significantly 
enriched in protein folding, protein refolding, and intrinsic apoptotic signaling pathway, while the under-dominance DEGs 
were significantly enriched in cell cycle. As possible candidate genes for thermo-resistant heterosis, GRP78, major egg 
antigen, BAG, Hsp70, and Hsp27 were over-dominantly expressed, while MCM6 and ANAPC4 were under-dominantly 
expressed. This study extends our understanding of the thermo-resistant heterosis in oysters.
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Introduction

Heterosis or hybrid vigor refers to the biological phenom-
enon in which hybrids exhibit superior performance, such as 
improved biomass production, developmental rates, yields, 
and stress tolerance, compared to its parents (Springer and 
Stupar 2007; Chen 2013). Crossbreeding is widely applied 
to crops and livestock like maize, rice, cattle, and poultry 
(Birchler et al. 2003; Green 2009), as well as to aquatic ani-
mals, including fish, abalone, scallop, and oyster (Rahman 

et al. 2013; de la Cruz and Gallardo-Escárate 2011; Wang 
et al. 2011; Hedgecock et al. 2007). Given its significance in 
agriculture, considerable interest has been focused on how 
heterosis contributes to increased trait in hybrids. Early 
studies proposed dominance, over-dominance, and epistasis 
genetic hypotheses to explain heterosis (Birchler et al. 2003). 
Moreover, complementation of genes from the parents may 
contribute to heterosis in maize (Lai et al. 2010) and Arabi-
dopsis (Childs et al. 2010). Heretofore, the consensus on 
heterosis is that no single hypothesis applies to every species 
or every phenomenon.

Phenotypic evolution usually proceeds by variations in the 
spatial and temporal modes of gene expression (Doebley and 
Lukens 1998). Thus, it is reasonable to assume that differ-
ential expression gene between hybrids and parents may be 
responsible for the heterosis (Swanson-Wagner et al. 2006; 
Zhai et al. 2013). Transcriptomic studies have yielded com-
prehensive insights into heterosis in some species. For exam-
ple, Hedgecock et al. (2007) speculated that non-additive gene 
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expression levels form the base of growth heterosis. Fujimoto 
et al. (2012) suggested that the early increase in activity of 
genes involved in photosynthesis resulted in a larger leaf area 
in hybrid Arabidopsis. Li et al. (2016) observed that several 
non-additive genes related to circadian rhythm regulation and 
flowering time were upregulated in hybrid rice. Understand-
ing the mechanisms of heterosis can help in the exploitation of 
heterosis (Somerville and Somerville 1999). However, only a 
few studies revealed differentially expressed genes, potentially 
associated with heterosis.

The Pacific oyster (Crassostrea gigas) is one of the most 
cosmopolitan bivalves in aquaculture due to its high meat 
quality, rapid growth, and excellent environmental tolerance 
(Shatkin et al. 1997; Langdon et al. 2003). Since 2008, C. 
gigas have suffered severe mass mortalities associated with 
complex interactions between the host, the high tempera-
tures, and pathogen (de Lorgeril et al. 2018). Fujian oyster 
(Crassostrea angulata) is another important shellfish species 
advantageous for its strong adaptability to warm seawater 
(Li et al. 2017; Ghaffari et al. 2019). To obtain new varie-
ties combining the growth advantage of C. gigas and heat 
resistance of C. angulata, hybrid oysters were artificially 
bred by crossing C. gigas and C. angulata. In the field, the 
hybrid oysters exhibited rapid growth and high-temperature 
tolerance traits and were thus suitable for large-scale aqua-
culture (Tan et al. 2020; Jiang et al. 2021, 2022a). Although 
several physiological and immune analyses have been con-
ducted (Meng et al. 2021; Jiang et al. 2022b), the genetic 
and molecular mechanisms associated with thermo-resistant 
heterosis are still poorly understood in hybrid oysters.

In this study, we used RNA sequencing (RNA-seq) tech-
nology to analyze two reciprocal hybrids and its parental spe-
cies, C. gigas and C. angulata. The objectives of this study 
were (1) to assess the deviation of hybrid gene expression 
from the mid-parent value, (2) to determine whether certain 
gene expression patterns in hybrids correlate with thermo-
resistant heterosis, and (3) to identify potential candidate 
genes or pathways contributing to thermo-resistant heterosis.

Materials and Methods

Biological Material

The C. gigas, C. angulata, and their reciprocal hybrids are 
neither an endangered nor protected species. All experiments 
in this study were conducted according to national and insti-
tutional guidelines.

In 2019, C. gigas and C. angulata broodstocks were 
obtained from Rongcheng, Shandong Province, and Zhang-
zhou, Fujian Province, respectively. The population con-
struction was performed according to Jiang et al. (2021). 
Briefly, the parents of C. gigas and C. angulata were used 

to construct the hybrids (C. gigas ♀ × C. angulata ♂: GA; 
C. angulata ♀ × C. gigas ♂: AG) using a reciprocal cross. 
Meanwhile, purebreds (C. gigas ♀ × C. gigas ♂: GG; C. 
angulata ♀ × C. angulata ♂: AA) were also constructed. 
After settlement, spats were transported to Rongcheng for 
field grow-out rearing. After 1 year, the pure (GG and AA) 
and hybrid (GA and AG) oysters were collected and trans-
ported to an aquafarm in Laizhou, Shandong Province. One 
hundred oysters with the similar sizes (6.0–7.5 cm) from 
each cross were selected, placed in rectangular cement 
ponds, and maintained for a 15-day acclimation period at 
ambient seawater temperature (22 ± 0.5 °C) and salinity 
(30 ± 0.5 psu). During the feeding trial, oysters were fed 
with fresh Phaeodactylum tricornutum Bohlin three times 
a day. One third of the seawater was replaced daily to ensure 
fresh water quality.

Thermal Experiment

The thermal experiment was performed in twelve 100-L 
polyethylene buckets with fresh seawater as previously 
described with slight modifications (Jiang et al. 2022b). In 
detail, the seawater temperature was gradually elevated from 
22 to 35 °C at a rate of 1 °C h−1. Subsequently, 20 healthy 
oysters in each cross were directly transferred to the buckets 
for 96 h. The water parameters were kept at nominal values 
during the whole experiment (temperature 35 ± 0.5 °C, salin-
ity 30 ± 0.5 psu). Triplicates for each cross were set in ther-
mal stress experiment. Only highly active oysters were used 
for tissue extraction. After 96 h, the survival rates of hybrid 
and purebred crosses were calculated. Simultaneously, three 
oysters per bucket were randomly chosen (n = 3 replicate 
buckets for each cross), and the gills were sampled, treated 
with liquid nitrogen, and stored at −80 °C.

RNA Extraction, Library Construction, 
and Sequencing

In each cross, the gills of three oysters were equally mixed as 
a biological sample, and each cross included three biologi-
cal replicates. Total RNA samples were extracted based on 
the instructions of TRIzol reagent (Invitrogen, USA), quan-
tified by a NanoPhotometer® spectrophotometer (Implen, 
CA, USA) and assessed for the integrity with the RNA 
6000 Nano Assay Kit of the Bioanalyzer 2100 system (Agi-
lent Technologies, CA, USA). RNA samples with an RNA 
integrity number (RIN) value approximately greater than 
7 were used in downstream applications. A total amount 
of 1 μg RNA per sample was used as input material for the 
RNA sample preparations. The library was constructed 
using the NEBNext® Ultra™ RNA Library Prep Kit for 
Illumina® (NEB, USA) following the manufacturer’s rec-
ommendations. The messenger RNA (mRNA) was enriched 
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from total RNA using the poly-T oligo-attached magnetic 
beads. mRNA was fragmented using divalent cations under 
elevated temperature in NEBNext First Strand Synthesis 
Reaction Buffer (5 ×). After that, using the cleaved RNA 
fragments as the template, random hexamer primer and 
M-MuLV Reverse Transcriptase were used for first-strand 
complementary DNA (cDNA) synthesis. This was followed 
by the synthesis of second-strand cDNA, end repair, and 
adaptor ligation; 250–300-bp fragments were selected using 
AMPure XP system (Beckman Coulter, Beverly, USA) for 
PCR amplification. High-throughput sequencing of RNA 
library was performed using the Illumina NovaSeq platform 
to generate 150-bp paired-end reads.

Identification of Differential Expression Genes

Clean reads were acquired after removing low-quality and 
primer/adapter-contaminated reads. The Q20, Q30, and GC 
contents of the clean reads were checked in the Fastp soft-
ware v0.20.0. The clean data were aligned to the reference 
genome (GenBank assembly accession: GCF_902806645.1) 
of C. gigas using Hisat2 v2.0.5. The featureCounts v1.5.0-
p3 was used to count the number of reads mapped to the 
reference genome. The fragments per kilobase per million 
fragments (FPKM) method (Trapnell et al. 2010) was used 
to estimate the expression levels of all genes. R package 
DESeq2 was used to identify the differentially expressed 
genes (DEGs) between hybrid and purebred crosses. Dif-
ferential expression quantification was based on a logarith-
mic scale (log2 fold change), the adjusted P value (Padj) 
(Benjamin–Hochberg approach) indicating the statistical 
significance of the observed changes. Padj < 0.05 and |log2 
(fold change)|> 1 were set as the thresholds for significantly 
differential expression.

Additive and Dominance Effect Analysis

The d/a ratio, also referred to as potence (Griffing 1990), 
provides a standardized measure of the F1 hybrid expres-
sion level relative to the average of the parental levels (Guo 
et al. 2006), as well as an indicator of genetic non-additivity 

(Vuylsteke et al. 2005). To assess the expression level of 
each gene with FPKM ≥ 1 in the hybrid crosses relative to 
the purebred crosses, we used the d/a ratio from quantitative 
genetics as a measure (Guo et al. 2006; Bi et al. 2014).

Specifically, d represents the dominant effect, a repre-
sents the additive effect, F1 is the gene expression level in 
GA or AG, P1 is the gene expression level in GG, and µ is 
the average gene expression level in the purebred crosses. 
If d/a = 0, then the expression level of GA or AG is equal 
to the average expression level of purebred crosses. If 
0 < d/a < 1, then the GA or AG expression is biased towards 
the GG levels. If d/a = 1, then the gene shows complete 
dominant effect from the C. gigas allele. If d/a > 1, then 
the hybrid expression level of this gene is beyond the range 
of purebred crosses. Likewise, in case of d/a < 0, genes 
show hybrid expression levels skewed towards AA levels 
(Bi et al. 2014).

To further break down the number of genes that expressed 
at the additive and non-additive levels, the degree of domi-
nance was measured according to the following formula (Xu 
2013; Liang 2017):

The genes in reciprocal hybrids were binned into seven 
expression patterns (Table 1).

Gene Ontology Annotation and Pathway Enrichment

Gene Ontology functional enrichment analysis of non-additive 
DEGs with different genetic patterns was carried out using 
the clusterProfiler v4.0.2 R package. Gene Ontology (GO) 
terms with Padj < 0.05 were significantly enriched by DEGs. 
Meanwhile, the non-additive DEGs with different genetic pat-
terns were mapped to the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database. Significantly enriched pathways 
were obtained using a Padj value < 0.05.

d

a
=

F
1
− �

P
1
− �

d

|a|
=

F
1
− �

|
|P1 − �||

Table 1   Classification of expressed genes in reciprocal hybrids between C. gigas and C. angulata 

Category Under- 
dominance (UD)

Dominance 
(D −)

Partial dominance 
(PD −)

Additivity 
(ADD)

Partial dominance 
(PD +)

Dominance 
(D +)

Over-dominance 
(OD +)

d/|a| (−∞, −1.2) [−1.2, −0.8) [−0.8, −0.2) [−0.2, 0.2] (0.2, 0.8] (0.8, 1.2] (1.2, + ∞)
GA (all genes) 7752 (52.49%) 1202 (8.14%) 1450 (9.82%) 716 (4.85%) 784 (5.31%) 383 (2.59%) 2481 (16.80%)
AG (all genes) 5082 (34.41%) 1496 (10.13%) 2291 (15.51%) 1179 (7.98%) 1324 (8.97%) 606 (4.1%) 2790 (18.89%)
GA (DEGs) 369 (31.78%) 44 (3.79%) 24 (2.07%) 50 (4.31%) 83 (7.15%) 60 (5.17%) 531 (45.74%)
AG (DEGs) 55 (22.00%) 29 (11.60%) 16 (6.40%) 20 (8.00%) 38 (15.20%) 22 (8.80%) 70 (28.00%)
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Quantitative Real‑Time PCR Validation

To validate the RNA-seq, we selected 7 heat response–related 
genes for quantitative real-time polymerase chain reaction 
(qRT-PCR) on Roche LightCycler 480 (Roche, Switzer-
land) using Green® Premix Ex Taq™ II (Takara, China). The 
remaining RNA samples after RNA-seq analysis were used 
for qRT-PCR. Primers were designed using the NCBI online 
Primer-BLAST (https://​www.​ncbi.​nlm.​nih.​gov/​tools/​primer-​
blast/) and are listed in Table S1. As a control for the input 
RNA, the level of a housekeeping gene, elongation factor 1-α 
(EF1-α), was also measured. The qRT-PCRs were carried out 
in 20 μL volumes containing 10 μL of TB Green PCR Mas-
ter Mix, 1 µL each of forward and reverse primers, 1 μL of 
diluted cDNA, and 7 μL of H2O. The conditions were 95 ℃ 
for 3 min, 40 cycles of 95 ℃ for 5 s, 60 ℃ for 30 s, and 40 ℃ 
for 1 min. Amplification efficiency of PCR was assessed by 
drawing standard curves from a serial dilution analysis of 
cDNA. All data was determined using 2−ΔΔCT method (Livak 
and Schmittgen 2001).

Statistical Analysis

Survival rates were analyzed using the SPSS 26.0 software. 
One-way analysis of variance (ANOVA) and LSD test were 
used to analyze the difference of survival rate among hybrids 
and purebreds. Differences were considered statistically sig-
nificant if P is < 0.05. Heterosis for survival rate is defined 
by the hybrid potence (hp). The formula to calculate hp was 
taken from Hedgecock et al. (2007) as

where F1 is the mean survival rate of GA or AG, and P1 and 
P2 are the mean survival rate of purebred crosses GG and 
AA, respectively.

Results

Hybrid Survival and Heterosis

After 96 h of heat stress, reciprocal hybrids exhibited a 
higher survival rate compared with GG (P < 0.05) and AA 
(P > 0.05) (Table 2). The survival rate of AA was higher, 
although not significantly so, than GG (P = 0.087). Hybrid 
potence for the two reciprocal hybrids were greater than 1.0 
(GA: hp = 2.54; AG: hp = 2.38), and GA was larger than AG. 
The reciprocal hybrids between C. gigas and C. angulata 
displayed classical hybrid vigor or survival heterosis.

hp =
2[F1 − (P1 + P2)/2]

|P1 − P2|

Transcriptome Assemblies

All 12 RNA libraries were of high quality with RIN values 
ranging from 7.4 to 8.5 after an RNA quality evaluation. 
More than 5.88 Gb of raw bases for each library and 530 
million 150-bp paired-end reads with an average of 44 mil-
lion raw reads for each of the 12 libraries were acquired 
(Table 3). After filtering low-quality data, 505 million 
clean reads were acquired with an average Q30 value of 
94.17% and an average GC content of 40.69%. The average 
mapping rate of clean reads was 79.07% in GG, 79.76% 
in GA, 78.10% in AG, and 74.98% in AA, respectively. 
These outcomes indicated that the sequencing data were of 
adequate quality for downstream analysis. Transcriptome 
data are available at SRA archive from the GenBank data-
base under the accession number PRJNA900034.

Identification of DEGs

To explore further the possible mechanisms and genes 
involved in the thermo-resistant heterosis of hybrid oyster, 
we compared the transcriptome profiles of hybrids (GA 
and AG) versus those of purebreds (GG and AA) (Fig. 1). 
The highest number of DEGs was observed in the “GA vs 
AA” group whereas the lowest was seen in the “AG vs GG” 
group after 96 h of heat stress (Fig. 1a). Relative to GG, 
510 and 282 DEGs were upregulated and downregulated 
in GA (Fig. 1c) while 233 and 144 DEGs were upregu-
lated and downregulated in AG (Fig. 1e). Also, relative 
to AA, 1212 and 822 DEGs were upregulated and down-
regulated in GA (Fig. 1d) while 396 and 180 DEGs were 
upregulated and downregulated in AG (Fig. 1e). Among 
these DEGs, 404, 143, 1397, and 143 genes were specifi-
cally expressed in “GA vs GG,” “AG vs GG,” “GA vs AA,” 
and “AG vs AA” groups, respectively; 12 DEGs were co-
expressed between the four comparison groups (Fig. 1b). 
The numbers of DEGs showed an expression bias in the 
direction between hybrids and purebreds, while hybrids’ 
gene expression patterns were more like GG other than AA.

Table 2   The survival rate and heterosis of four crosses

Different superscript letters indicate a significant difference (P < 0.05)

Crosses Survival rate (%) hp

GA 60.00 ± 7.20a 2.54
AG 58.89 ± 10.10a 2.38
GG 34.44 ± 8.31b –
AA 48.89 ± 6.85ab –
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Pattern of Hybrid Gene Expression

We used a d/a rate to compare the transcript levels of crossbreds 
relative to C. gigas and C. angulata for detecting whether global 
gene expression levels in the hybrids resemble one parent over 
the other. The results showed that the distribution of the d/a 
ratios was clearly biased towards C. gigas (Fig. 2a). To examine 

this further, we assessed the d/a ratios of DEGs of recipro-
cal hybrids. Compared to all genes, DEGs exhibited a higher 
degree of bias toward the C. gigas genome parent (Fig. 2b). 
Furthermore, obvious differences in d/a rate distribution were 
found between reciprocal hybrids. The proportion of genes that 
showed C. gigas genome bias expression was larger in GA. The 
d/a ratio distributions for DEGs in GA peak around 2.

Table 3   Sequencing and 
assembly statistics of the 
transcriptome data

Sample Raw reads Clean reads Q30 (%) GC (%) Total reads Mapped reads Mapped ratio

GG_1 41,084,196 39,191,574 94.33 41.00 18,281,208 14,322,587 78.35
GG_2 41,769,614 39,937,676 93.66 40.49 18,519,694 14,587,246 78.77
GG_3 43,214,076 41,528,114 93.9 40.77 19,375,547 15,520,060 80.1
AA_1 44,451,662 41,936,676 94.55 40.31 19,664,341 14,862,396 75.58
AA_2 43,888,728 40,942,748 94.25 40.05 19,559,915 14,687,291 75.09
AA_3 45,868,718 42,522,228 94.53 40.05 20,445,875 15,182,212 74.26
AG_1 46,397,934 44,110,888 93.9 39.20 20,249,849 15,271,632 75.42
AG_2 47,492,132 46,050,856 94.33 43.38 21,473,842 17,247,668 80.32
AG_3 44,515,244 42,968,684 94.33 40.95 19,596,675 15,395,478 78.56
GA_1 42,878,894 41,191,818 94.04 40.75 18,990,748 15,187,645 79.97
GA_2 44,359,822 42,388,478 94.34 40.65 19,533,783 15,446,565 79.08
GA_3 44,138,910 42,403,638 93.87 40.66 19,342,742 15,520,659 80.24

Fig. 1   Comparison of differentially expressed genes (DEGs). The number 
of upregulated and downregulated DEGs in each group (a) and Venn dia-

gram of overlapping DEGs among these four groups (b); volcano plot of 
DEGs in GA vs GG (c), GA vs AA (d), AG vs GG (e), and AG vs AA (f)
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To evaluate additive, dominant, and over-dominant 
expression, we divided genes in the reciprocal hybrids into 7 
categories (Table 1). As for all genes, the percentage of non-
additivity in GA and AG was 95.15% and 92.02%, respec-
tively; the percentage of non-additivity in GA and AG was 
95.69% and 92.00% in terms of DEGs, respectively. Over-
dominance (OD) and under-dominance (UD) accounted for 
more than half of genes, indicating that, for GA and AG, 
most of the genes were expressed at a level beyond the range 
of the purebreds. Notably, UD accounted for the highest pro-
portion of the 7 categories for all genes, while OD accounted 
for the highest proportion for DEGs. GA (45.74%) showed 
more OD expression than AG (28.00%) in terms of DEGs.

Functional Analysis of Non‑additive DEGs

To further explore the potential mechanism of heterosis, we 
identified the molecular function of non-additive DEGs, tak-
ing into account their genetic model (Fig. 3). In GA, the non-
additive DEGs were mostly enriched (P < 0.05) in deoxyribose 
phosphate biosynthesis and metabolic processes, nucleobase-
containing small molecule interconversion and 9 + 2 motile 
cilium (UD DEGs); in oxidoreductase activity (D − DEGs); 
in amino acid transport (PD − DEGs); in oxidoreductase 
activity (PD + DEGs); and in protein folding and refolding, 
unfolded protein binding, and protein folding chaperone and 
chaperone complex (OD DEGs) (Fig. 3a; Table S2). In AG, 
the non-additive DEGs were mainly involved (P < 0.05) in 
extracellular transport, cilium-dependent cell motility, 9 + 2 
motile cilium, and MCM complex (UD DEGs); in MutSalpha 

complex binding (D − DEGs); and in the regulation of 
response to butyrate, intrinsic apoptotic signaling pathway, 
positive regulation of cell migration by vascular endothelial 
growth factor signaling pathway, and protein refolding (OD 
DEGs) (Fig. 3b; Table S3).

A total of 7 and 14 significant (P < 0.05) KEGG pathways 
were identified by the UD and OD genes in GA, respec-
tively (Fig. 4a; Table S4), while only 4 significant (P < 0.05) 
KEGG pathways were identified by the OD genes in AG 
(Fig. 4; Table S5).

In GA, significant pathways enriched from the UD genes 
were mainly related to pyrimidine metabolism, pentose 
phosphate pathway, cell cycle, drug metabolism, and DNA 
replication; those from the OD genes were mainly related 
to chaperones and folding catalysts, antigen processing and 
presentation, protein processing in endoplasmic reticulum, 
longevity-regulating pathway, spliceosome, and proteasome. 
In AG, significant pathways enriched from the OD genes 
were mainly related to chaperones and folding catalysts, 
longevity-regulating pathway, pyrimidine metabolism, and 
protein processing in endoplasmic reticulum.

Quantitative Real‑Time PCR

We selected seven genes (GRP78, major egg antigen, 
BAG3, HSP27, HSP70, dnaJ, and Birc3) to verify the dif-
ferential expression of genes identified by RNA-seq. The 
qRT-PCR results indicated that the relative expression 
of each gene was consistent with the trend of RNA-seq 
(Table 4), suggesting the accuracy of RNA-seq analysis.

a b

Fig. 2   Results of using the d/a ratio to quantify the level of deviation in transcript expression of the reciprocal hybrids relative to the mid-parent 
value of C. gigas and C. angulata. a Reciprocal hybrids’ d/a ratio distribution of all genes; b reciprocal hybrids’ d/a ratio distribution of DEGs
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Discussion

Heterosis has been widely utilized in aquaculture breeding 
practices (Hedgecock et al. 2007; Rawson and Feindel 2012).  
Despite its vital importance to the aquaculture, a mechanis-
tic understanding of heterosis has not been achieved. Con-
ceptual developments could help increase the production 

of animals by the manipulation of heterosis (Chen 2013). 
Here, we preliminarily assessed the relationship between 
transcriptional profiles and thermo-resistant heterosis in 
the hybrid oysters.

A total 505 million high-quality reads were obtained from 
the gills of reciprocal hybrids and two purebreds under heat 
stress, and 38,210 annotated genes were identified. Over 

Fig. 3   The top 10 enriched GO terms derived from the GO enrich-
ment analysis of the non-additive DEGs in GA (a) and AG (b) under 
different expression patterns. The blue pentagrams indicate common 

GO terms shared by GA and AG. Genes with OD expression pattern 
were upregulated in hybrids, and genes with UD expression pattern 
were downregulated in hybrids

Fig. 4   The top 10 KEGG enrichment pathways of the non-additive 
DEGs in GA (a) and AG (b) under different expression patterns. The 
blue pentagrams indicate common KEGG pathways shared by GA and 

AG. Genes with OD expression pattern were upregulated in hybrids, 
and genes with UD expression pattern were downregulated in hybrids
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75% of the clean reads of C. angulata were mapped to the 
C. gigas genome, indicating high transcriptomic similarity, 
which may explain why the two oysters can hybridize and 
obtain fertile F1 offspring. The lowest mapping rate, how-
ever, was found in C. angulata, which may reflect the spe-
cies differences. Meanwhile, the mapping rate of GG was 
slightly lower than that of GA, which might be due to the 
relatively large variation (such as the presence of SNPs and 
indels) in GG samples relative to the reference genome under 
heat stress. Extensive DEGs in aquatic animal purebreds and 
hybrids has been documented in the past by several studies 
(Sun et al. 2016; Zheng et al. 2019; Tripp-Valdez et al. 2021). 
In this study, 3779 DEGs between reciprocal hybrids and 
purebreds were identified from the annotated genes. It has 
been hypothesized that DEGs between hybrid and parental 
species may be responsible for heterosis (Swanson-Wagner 
et al. 2006; Zhai et al. 2013). In yellow catfish hybrid, several 
DEGs with important physiological functions for heterosis 
were identified, indicating genomic instability and generation 
of the superior phenotype in offspring (Zhang et al. 2019). 
Also, Guo et al. (2006) suggested a positive relationship 
between the percent of interparental DEGs and production 
hybrid vigor. It is interesting to know that the percentage of 
DEGs between reciprocal hybrids and two purebreds was 

asymmetric. DEGs between the GA and purebreds were obvi-
ously higher than those of “AG vs AA” and “AG vs GG.” 
Therefore, this asymmetry may explain why GA (hp = 2.54) 
had higher hybrid potence than AG (hp = 2.38).

One of the objectives of our research was to assess 
whether transcript levels in reciprocal hybrids resembled 
one purebred more than the other. In theory, the expression 
levels of hybrid genes can be close to the mid-parent value 
(MPV), analogous to either the maternal or paternal genome, 
or beyond the range of parents. However, we observed that 
the global transcriptome expression levels of GA and AG 
were closer to C. gigas levels than to C. angulata levels 
under heat stress. Meanwhile, this trend was more evident 
in the expression levels of DEGs. Usually, hybridization is 
coupled with uneven gene loss and structural variation, one 
subgenome possessing more dominant genes than the other 
(Schnable et al. 2011). Therefore, it is no surprise that genes 
from the dominant subgenome had higher expression levels. 
In several hybrid fishes, the maternal genome was dominant 
compared with the paternal genome, whereas the expres-
sion of the paternal genome was considered to be the under-
expression of the maternal genome (Debes et al. 2012; Zhou 
et al. 2015). A possible explanation for the downregulation 
of subgenomic genes from one parent is genomic imprinting 
or heterochronic allelic regulation (Guo et al. 2003). Besides 
this, this expression level bias may also be related to the use 
of the C. gigas genome as a reference genome. In addition, 
Guo et al. (2006) found that gene expression bias indicated 
the divergent environmental responses of the parental alleles 
at multiple loci in maize hybrid: the proportion of paternally 
biased genes improved with the increase of maize density.

In the classical model of heterosis, there is no genotypic 
divergence for nuclear genes between reciprocal hybrids, i.e., 
AB = BA (Hedgecock et al. 2007). We found that although 
the d/a ratio distribution was skewed toward the C. gigas par-
ent, the degree varied. The hybrid GA with higher survival 
rate exhibited a larger proportion of genes with the C. gigas 
genome’s biased expression as compared to the hybrid AG. 
Hybridization is evolutionary and mechanistically interesting, 
in that the step requires the conciliation of two different sets 
of genomes and regulatory interactions. In reciprocal hybrids, 
the divergence in allele expression may be the result of differ-
ential regulation in cis-acting elements or trans-acting factors 
(Springer and Stupar 2007). For example, it was found that 
the cis and trans effects facilitated the expression of maternal 
subgenomes in Oreochromis niloticus × Oreochromis aureus, 
contributing to the expression advantage of growth hormone. 
However, there were few pieces of evidence of a significant 
maternal or paternal effect in the reciprocal hybrids of maize 
(Swanson-Wagner et al. 2009).

To address the gene expression patterns between hybrid 
oysters and their parents further, we divided all genes and 
DEGs with FPKM ≥ 1 into seven categories. We found 

Table 4   Validation of RNA-seq results using qPCR

Group Gene ID Gene abbreviation Log2 fold change

RNA-seq qPCR

GA vs GG LOC105323261 GRP78 2.40 2.68
LOC105346578 major egg antigen 1.37 1.03
LOC105334580 BAG3 1.69 1.59
LOC105331471 HSP27 0.57 0.55
LOC105326385 HSP70 1.48 1.58

GA vs AA LOC105323261 GRP78 4.38 4.11
LOC105346578 major egg antigen 1.96 1.92
LOC105334580 BAG3 2.22 2.68
LOC105331471 HSP27 1.18 1.30
LOC105326385 HSP70 1.45 1.46
LOC105323151 dnaJ 1.24 1.50
LOC105334815 Birc3 2.87 3.05

AG vs GG LOC105323261 GRP78 0.78 0.89
LOC105346578 major egg antigen 1.10 0.97
LOC105334580 BAG3 1.25 1.23
LOC105331471 HSP27 1.27 1.56
LOC105326385 HSP70 0.89 0.95

AG vs AA LOC105323261 GRP78 2.76 2.32
LOC105346578 major egg antigen 1.70 1.86
LOC105334580 BAG3 1.79 2.32
LOC105331471 HSP27 1.89 2.31
LOC105326385 HSP70 0.86 0.83
LOC105334815 Birc3 2.21 2.15
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a substantial non-additive patterns of gene expression 
(over 92%), in which d/|a|< − 1.2 or d/|a|> + 1.2, a result 
in line with levels of genome expression modes observed 
inTakifugu rubripes × Takifugu flavidus (Gao et al. 2013), 
Megalobrama amblycephala × Culter alburnus (Zhou et al. 
2015), Haliotis gigantea × Haliotis discus hannai (Xiao et al. 
2021), hybrid Pinctada fucata martensii (Yang et al. 2018), 
and hybrid C. gigas (Hedgecock et al. 2007), but differing 
clearly from that in hybrid maize (Swanson-Wagner et al. 
2006; Stupar and Springer 2006) and hybrid mice (Cui et al. 
2006). It reckons that the genetic base of hybrid behavior 
could be primarily or partially attributed to the complemen-
tarity of additive and non-additive genetic effects (Zhang 
et al. 2017a; Xiao et al. 2021). Springer and Stupar (2007) 
concluded that the combination of two alleles in a hybrid 
that change due to cis-linked changes would lead to MPV 
levels (additive effects). This is reminiscent of the metabolic 
heterosis model, which suggests that hybrid could exhibit 
best-parent heterosis, with half of the total enzyme between 
the two parents (Fiévet et al. 2010). On the contrary, our 
results indicated that non-additive expression genes were 
closely related to heterosis (Hedgecock et al. 2007; Fujimoto 
et al. 2012; Yang et al. 2018).

Non-additive expression of genes will result in activation, 
repression, dominance, or over-expression (Chen 2007). As 
expected, all possible patterns of hybrid expression, includ-
ing additivity, partial dominance, high and low dominance, 
and under- and over-dominance, were observed in GA and 
AG. Moreover, OD and UD accounted for the highest per-
centage, more than half of non-additive genes. The over-
dominance model was considered to be the basic mechanism 
of transgressive heterosis, which could create superior het-
erozygous gene expression pattern (Baranwal et al. 2012; 
Chen 2013). In tomato, over-dominant expression of a sin-
gle flowering gene SFT contributes to production heterosis 
(Krieger et al. 2010). In abalone, the over-dominance was 
assumed to be associated with heterosis in disease resistance 
(Di et al. 2015) and heat tolerance (Xiao et al. 2021). We 
also noted that the hybrid cross with the larger survival hp, 
GA, showed a higher percentage of OD modes in DEGs. 
Meanwhile, more DEGs exhibited OD rather than UD 
modes in reciprocal hybrids, suggesting that hybridization 
was usually related to hybrid vigor rather than hybrid weak-
ness in the progeny (Gu et al. 2019). An interesting expla-
nation for the coexistence of OD and UD effects was that 
miRNAs modulate gene expression through cleavage and 
transcriptional silencing of target mRNAs (Luo et al. 2009).

DEGs common to both GA and AG were proposed as 
potential candidates for heterosis (Zhang et al. 2017b). We 
found, quite interestingly, this only included DEGs with UD 
or OD expression pattern, implying that under- and over-
dominance were involved in thermo-resistant heterosis in 
oysters. Protein quality control is essential for maintaining 

cellular homeostasis under adverse circumstances (Zhang 
et al. 2012a). Among genes with an OD pattern, the most 
frequently represented biological processes in reciprocal 
hybrids were protein folding and refolding terms/pathways, 
including protein refolding (GO:0042026), chaperones and 
folding catalysts (ko03110), protein processing in endoplas-
mic reticulum (ko04141), and longevity-regulating path-
way in multiple species (ko04213). The major egg antigen 
belongs to the polygene family of small heat shock proteins 
(HSP20) (Zhang et al. 2021). GRP78 is an important regula-
tor of endoplasmic reticulum homeostasis, which plays vari-
ous roles in protein folding, ER calcium binding, and con-
trolling of the activation of transmembrane ER stress sensors 
(Rao et al. 2002). Two genes were significantly enriched 
in pathways related to protein homeostasis. Over-dominant 
expression (upregulation) of these two genes involved in 
protein homeostasis may well be consistent with the higher 
survival rate of reciprocal hybrids compared to purebreds. In 
addition, more than ten GO terms related to protein folding 
or refolding were significantly enriched in an OD pattern of 
GA. Accordingly, similar to the results presented in hybrid 
abalone (Xiao et al. 2021), genes with an OD pattern may 
play an important role in thermo-resistant heterosis by main-
taining protein homeostasis.

The negative regulation of intrinsic apoptotic signal-
ing pathway (GO:1902176) was another most significantly 
enriched GO term with an OD pattern in GA and AG under 
thermal stress. The effective anti-apoptosis system may be 
an adaptive capacity for bivalves to tackle environmental 
stressors (Hu et al. 2022). BAG protein binds the ATPase 
structural domain of Hsp70 and triggers conformational 
alterations, which can strongly respond to anti-apoptosis 
mechanism (Zhu et al. 2016). Upregulation of intracellu-
lar Hsp27 protects cells from TNF-α-mediated apoptosis 
(Lampros et al. 2022). In this study, BAG, Hsp70, and 
Hsp27 were OD expressed in both GA and AG, thereby 
playing a key role in defense under heat stress to prolong 
hybrid oyster lifespan (Zhang et al. 2012b). Our result par-
allels the finding in Crassostrea sikamea (♀) × C. gigas 
(♂) that inhibition of apoptosis may be a critical cause of 
hybrid adaptation (Zhang et al. 2022).

Inhibited cell proliferation under stress was shown to 
preserve energy and prevent cells with damaged DNA 
from dividing (Buckley et al. 2006). We clearly observed 
that the DEGs involved in the cell cycle (ko04110) and 
cell cycle–yeast pathway (ko04111) were UD expressed 
in GA and AG. MCM6 is an important regulator of DNA 
replication that carries instructions for partial synthesis 
of the MCM complex, resulting in the start of eukary-
otic genome replication (Zeng et al. 2021). ANAPC4 is 
a subunit of the anaphase-promoting complex (APC), 
which facilitates metaphase-anaphase shift by ubiquit-
inating its specific substrates (Jörgensen et al. 2001). The 
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UD expression (downregulation) of MCM6 and ANAPC4 
may be one of the mechanisms for the reciprocal hybrids 
to adapt to thermal stress.

Conclusion

Hybrid oysters exhibited higher survival rate than parental 
species, C. gigas and C. angulata. Here, we examined the 
transcriptomic divergence between the reciprocal hybrids 
and its parents under thermal stress using RNA-seq. The 
global gene expression levels in reciprocal hybrids were 
noticeably biased towards the C. gigas. The majority of the 
expressed genes exhibited non-additive expression patterns, 
in which under- and over-dominant expression levels were 
the main categories. We proposed that the OD genes contrib-
ute to heterosis mainly by maintaining protein homeostasis 
and inhibiting apoptosis, whereas UD genes contribute to 
heterosis mainly by reducing cell proliferation. This study 
enhances our current understanding of thermo-resistant het-
erosis in hybrid oysters, and several possible candidate genes 
may prove useful in the efforts to breed thermo-resistant 
varieties, which might help in reducing production losses 
due to massive mortality during warm season.
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