教授 博士生导师
邮箱:yfwang@ouc.edu.cn
地址:青岛市鱼山路5号,中国海洋大学海洋生命学院化学馆219室
个人履历
2007年在中国海洋大学信息科学与工程学院电子系通信与数据系统专业获得硕士学位。2007年9月至2009年9月,在中国海洋大学信息科学与工程学院计算机系计算机应用技术专业攻读博士学位。 2009年9月至2011年6月,参加国家联合培养博士生项目,赴英国邓迪大学(University of Dundee UK)数学系(Division of Mathematics )生物计算专业学习。 2011年6月至2012年3月,在英国邓迪大学(University of Dundee UK)数学系(Division of Mathematics)生物计算专业做博士后工作。
科研方向/领域
研究主要集中在生物计算中多尺度问题(Multiscale Problem)、神经网络模型(Neural Network)、反问题 (Inverse Problem)等方面。
代表性专著
1. Guo Zhenlin, Lin Ping , Ji Guangrong, Wang Yangfan. Retinal vessel segmentation using a finite element based binary level set method.Inverse Problems and Imaging, 2014, 8(2): 459-473. (SCI二区)
2. Guo Zhenlin, Lin Ping , Wang Yangfan. Continuous finite element schemes for a phase field model in two-layer fluid Benark-Marangoni convection computations, Computer Phys Comm., 2014, 185(1): 63-78. (SCI一区)
3. Trucu, Dumitru, Lin Ping, Chaplain Mark A. J., Wang Yangfan. A multiscale moving boundary model arising in cancer invasion, Multiscale Modelling Simulation: A SIAM Interdisciplinary J., 2013, 11(1): 309-335. (SCI 一区)
4. Wang Yangfan, Ji Guangrong, Lin Ping, Trucco Emanuele. Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recognition, 2013, 46(8): 2117-2133. (SCI二区)
5. Wang Yangfan, Lin Ping, Wang Linshan. Exponential stability of reaction�diffusion high-order Markovian jump Hopfield neural networks with time-varying delays. Nonlinear Analysis: Real World Applications, 2012, 13(3): 1353-1361.(SCI一区)
6. Wang Yangfan, Lu Chunge, Ji Guangrong, Wang Linshan. Global exponential stability of high-order Hopfield-type neural networks with S-type distributed time delays. Communications in Nonlinear Science and Numerical Simulation, 2011,16(8): 3319-3325.(SCI一区)
7. Wang Yangfan, Wang Linshan. LMI-Based Approach for Exponential Robust Stability of High-Order Hopfield Neural Networks with Time-Varying Delays. J. Applied Mathematics, 2012, doi: 10.1155/2012/182745.(SCI)
8. Nian Rui, He Bo, Yu Jia, Bao Zhenmin, Wang Yangfan. ROV-based Underwater Vision System for Intelligent Fish Ethology Research. International Journal of Advanced Robotic Systems, 2013,10. (SCI)