学术报告--刘文杰博士:Polynomial approximation of singular functions in some new fractional Sobolev spaces
发布者: 张临杰
发布时间:2020-10-18
浏览次数:421

要:

In this talk, we introduce a new theoretical framework built upon fractional Sobolev-type spaces involving Riemann-Liouville fractional integrals/derivatives for optimal error estimates of orthogonal polynomial approximations to functions with limited regularity. It naturally arises from exact representations of orthogonal polynomial expansion coefficients. Here, the essential pieces of the puzzle for the error analysis include (i) fractional integration by parts (under the weakest possible conditions), and (ii) generalised Gegenbauer functions of fractional degree (GGF-Fs): a new family of special functions with notable fractional calculus properties. (based on joint works with Li-Lian Wang, Huiyuan Li and Boying, Wu)

报告人:

刘文杰博士现为哈尔滨工业大学数学学院讲师。曾经为新加坡南洋理工大学的访问学者和Research Fellow。当前主要研究谱方法及其应用、逼近理论、发展方程的数值解法等。目前主持中国博士后科学基金面上项目和国家自然科学基金青年项目。在Mathematics of Computation,Journal of Computational Physics,Journal of Approximation Theory,Journal of Scientific Computing等国际著名期刊发表SCI论文17篇。


间:2020102010:00-11:00

点:腾讯会议 ID:199 657 780


欢迎广大师生参加!


数学科学学院

20201018


数学科学学院

姓            名:

学术报告--刘文杰博士:Polynomial approximation of singular functions in some new fractional Sobolev spaces

职            称:

邮            箱:

办     公     室:

办 公 室 电 话:

研  究  方  向:

要:

In this talk, we introduce a new theoretical framework built upon fractional Sobolev-type spaces involving Riemann-Liouville fractional integrals/derivatives for optimal error estimates of orthogonal polynomial approximations to functions with limited regularity. It naturally arises from exact representations of orthogonal polynomial expansion coefficients. Here, the essential pieces of the puzzle for the error analysis include (i) fractional integration by parts (under the weakest possible conditions), and (ii) generalised Gegenbauer functions of fractional degree (GGF-Fs): a new family of special functions with notable fractional calculus properties. (based on joint works with Li-Lian Wang, Huiyuan Li and Boying, Wu)

报告人:

刘文杰博士现为哈尔滨工业大学数学学院讲师。曾经为新加坡南洋理工大学的访问学者和Research Fellow。当前主要研究谱方法及其应用、逼近理论、发展方程的数值解法等。目前主持中国博士后科学基金面上项目和国家自然科学基金青年项目。在Mathematics of Computation,Journal of Computational Physics,Journal of Approximation Theory,Journal of Scientific Computing等国际著名期刊发表SCI论文17篇。


间:2020102010:00-11:00

点:腾讯会议 ID:199 657 780


欢迎广大师生参加!


数学科学学院

20201018


地址:青岛市崂山区松岭路238号   
电话:0532-66787153
邮编:266100
版权所有©中国海洋大学     数学科学学院     鲁ICP备05002467号-1     鲁公网安备 37021202000030号

官方微信

Baidu
map
.