一、基本信息
姓名:姜兆霞
性别:女
籍贯:山东省临沂市
联系地址:山东省青岛市崂山区松岭路238号
邮编:266100
E-mail: jiangzhaoxia@ouc.edu.cn
二、简历
1、学习经历
2008.08-2014.07中国科学院地质与地球物理研究所,地球动力学,硕博连读
2004.09-2008.07中国海洋大学,勘查技术与工程,学士学位
2、工作经历
2019.09-至今中国海洋大学,教授
2020.01-至今中国海洋大学,博士生导师
2017.12-2019.08 中国海洋大学,副教授
2014.06-2017.11 中国科学院地质与地球物理研究所,博士后
2015.10-2016.10 澳大利亚国立大学,访问学者
2012.06-2012.07 法国艾克斯-马赛大学访问学者
2012.05-2012.08 意大利Molise大学访问学者
2009.10-2010.01 西班牙Córdoba大学访问学者
3、学术兼职
美国地球物理学会(AGU),会员
中国地球科学联合会(CGU),会员
《Geosystems and Geoenvrionment》副主编
《Geophysical Research Letters》、《Journal of Geophysical Research》、《Tectonics》、《Holocene》、《Scientific Reports》、《Marine Pollution Bulletin》、《Journal of Asian Earth Sciences》、《Quaternary International》、《Journal of Applied Geophysics》、《Compostites Part B》、《中国科学》、《地球物理学报》、《第四纪研究》等审稿人
4、主要科研项目
1)国家自然科学基金面上项目,“红层的重磁化机制:实验模拟与天然样品综合研究”(42274089),2023.01-2026.12,主持
2)山东省杰出青年基金,“古地磁学”(ZR2022JQ16),2023.01-2025.12,主持
3)青岛海洋科学与技术国家实验室“十四五”重大项目,子课题“数字孪生海底灾害模型与海底磁场环境实时感知”(2022QNLM050302-5),2022.01-2024.12,主持
4)国家自然科学基金-优秀青年基金,“古地磁学”(41922026),2020.01-2022.12,主持
5)国家自然科学基金创新群体项目,“海底古地貌动态重建”(42121005),2022.01-2026.12,项目骨干
6)国家自然科学基金重大研究计划培育项目,“夏威夷-皇帝海山链运动学过程研究”(91858108),2019.01-2021.12,项目负责人
7) 中国海洋大学国家优秀青年基金培育项目“地磁学”(201941007),2019.01-2021.12,项目负责人
8)国家自然科学基金青年基金项目,“华南红层的重磁化机制研究”(41504055)2015.01-2018-12,项目负责人
9)中国博士后基金一等资助,“赤铁矿碎屑剩磁倾角浅化机制研究” (2014M560112),2014.09-2016.12,项目负责人
10)中国博士后基金特别资助,“应用红层构建地磁场相对强度的可行性研究”(2015T80131),2015.09-2017.12,项目负责人
5、主要的科研奖励
2019年中国海洋大学青年英才一层次
2019年国家优秀青年科学基金
2019年中国海洋大学天泰优秀人才奖
2017年中国海洋大学青年英才三层次
2015年中国科学院优秀博士论文奖
2014年中国科学院院长特别奖
2010年中国地球物理年会优秀论文奖/指南针奖
三、主要学术领域
1、学科方向:海洋地质学、古地磁学
2、近期研究兴趣:
1)海底构造磁学研究:依托古地磁方法,以洋底基岩样品为研究载体,建立传统岩石矿物学与古地磁学相结合的综合研究体系,多尺度(从宏观到微观尺度)、多参数(矿物结构、成分、磁学性质等)研究基岩的形成过程及其记录的古地磁场信息。从古地磁学、岩石学、矿物学等多角度剖析太平洋、印度洋及洋陆过渡带地区的构造过程。
2)海洋古气候演化研究:利用磁性地层学手段,为海洋沉积物建立可靠的年龄框架。在此基础上,依托传统的古地磁学方法和技术,将磁性矿物的形成过程和载磁机理、赋存状态相结合,以此反演海洋环境变化与源-汇过程,开展海洋古气候演化的综合研究。
四、主要论文目录
1、论文收录情况:已发表论文50余篇,被SCI收录50余篇,其中第一作者及通讯作者论文20余篇。
2、代表性文章列表如下:
第一作者/及通讯作者文章
[1]Jiang, ZX*, Liu, Q., Roberts, A.P., Dekkers, M.J., Barrón, V., Torrent, J. and Li, S., 2022. The magnetic and color reflectance properties of hematite: from Earth to Mars. Reviews of Geophysics,e2020RG000698.
[2]Jiang, ZX*, Li, S., Liu, Q., Zhang, J., Zhou, Z. and Zhang, Y., 2021. The trials and tribulations of the Hawaii hot spot model. Earth-Science Reviews, 215: 103544.
[3]Jiang ZX*, Jin, C., Wang, Z., Liu, Q.*, Li, S. and Yao, Z., 2020. Chronostratigraphic framework of the East China Sea since MIS 6 from geomagnetic paleointensity and environmental magnetic records. Global and Planetary Change, 185: 103092.
[4]Jiang ZX, Liu, QS, Roberts, A.P., Barrón, V., Torrent, J., Zhang, Q., 2018. A new model for transformation of ferrihydrite to hematite in soils and sediments. Geology, https://doi.org/10.1130/G45386.1
[5]Jiang ZX, Liu QS, Dekkers MJ, Zhao X, Roberts AP, Yang ZY, Jin CS, Liu JX, 2017. Remagnetization mechanisms in Triassic red beds from South China. Earth and Planetary Science Letters 479, 219-230.
[6]Jiang ZX, Liu QS, Zhao X, Roberts AP, Heslop D, Barrón V, Torrent J, 2016. Magnetism of Al-magnetite reduced from Al-hematite, Journal of Geophysical Research, 121, doi:10.1002/2016JB012863.
[7]Jiang ZX, Liu QS, Dekkers MJ, Barrón V, Torrent J, Roberts AP, 2016. Control of Earth-like magnetic fields on the transformation of ferrihydrite to hematite and goethite, Scientific Reports, 6, doi:10.1038/srep30395.
[8]Jiang ZX, Liu QS, Dekkers MJ, Tauxe L, Qin HF, Barrón V, Torrent J, 2015. Acquisition of chemical remanent magnetization during experimental ferrihydrite–hematite conversion in Earth-like magnetic field—implications for paleomagnetic studies of red beds, Earth and Planetary Science Letters, 428:1-10
[9]Jiang ZX, Liu QS, Zhao XY, Jin CS, Liu CC, Li SH, 2015. Thermal magnetic behaviour of Al-substituted haematite mixed with clay minerals and its geological significance. Geophysical Journal International, 200(1):130-143
[10]Jiang ZX, Liu QS, Colombo C, Barrón V, Torrent J,2014. Quantification of Al-goethite from diffuse reflectance spectroscopy and magnetic methods, Geophysical Journal International, 196, 131-144.
[11]Jiang ZX, Liu QS, Dekkers MJ, Colombo C, Yu YJ, Barrón V, Torrent J, 2014. Ferro and antiferromagnetism of ultrafine-grained hematite.Geochemistry, Geophysics, Geosystems, 15(6), 2699-2712
[12]Jiang ZX, Rochette P, Liu QS, Gattacceca J, Yu YJ,Barrón V, Torrent J, 2013. Pressure demagnetization of synthetic Al substituted hematite and its implications for planetary studies, Physics of Earth and Planetary Interiors, 224, 1-10.
[13]Jiang ZX, Liu QS, Barrón V, Torrent J, 2012, Magnetic discrimination between Al-substituted hematites synthesized by hydrothermal and thermal dehydration methods and its geological significance, Journal Geophysical Research, 117, B02102, doi:10.1029/2011JB008605
[14]Jiang ZX, Liu QS, 2012. Magnetic characterization and paleoclimatic significances of late Pliocene-early Pleistocene sediments at site 882A, northwestern Pacific Ocean, Science in China, 55, 323-331.
[15]Chen, L., Guan, Y., Zhou, L., YIN, Z. and Jiang ZX*, 2022. Variability of Indian Monsoon and its forcing mechanisms since late Quaternary. Frontiers in Earth Science, 10: 977250. doi: 10.3389/feart.2022.977250.
[16]章钰桢, 姜兆霞*, 李三忠, 王誉桦,于雷, 2022. 大洋橄榄岩的蛇纹石化过程:从海底水化到俯冲脱水. 岩石学报, 38(4): 1063-1080.
[17]陈龙,陈亮,殷征欣,官玉龙,章钰桢,姜兆霞*,2022. 晚更新世以来南海中央海盆沉积物的磁学特征:对物源和东亚季风演化的指示.地球物理学报,doi:10.6038/cjg2022Q0418
[18]姜兆霞*, 李三忠, 刘青松, 张建利,章钰桢, 2019. 夏威夷-皇帝海山链成因机制—古地磁学约束. 海洋地质与第四纪地质, 39(5): 104-114.
[19]姜兆霞, 刘青松, 2016. 赤铁矿的定量化及其气候意义. 第四纪研究, 36, 676-689.
[20]姜兆霞, 刘青松, 2012. 影响赤铁矿中铝替代量的因素及其环境意义探讨, 第四纪研究, 32(004): 608-614
[21]姜兆霞,刘青松, 2011.上新世末期-更新世早期西北太平洋ODP882A孔沉积物的磁学特征及其古气候意义.中国科学:地球科学,41,1242-1252
非第一作者/通讯作者文章
[1]Chou, Y.-M., Jiang, X., Liu, Q., Hu, H.-M., Wu, C.-C., Liu, J., Jiang ZX, Lee, T.-Q., Wang, C.-C., Song, Y.-F., Chiang, C.-C., Tan, L., Lone, M.A., Pan, Y., Zhu, R., He, Y., Chou, Y.-C., Tan, A.-H., Roberts, A.P., Zhao, X., Shen, C.-C., 2018. Multidecadally resolved polarity oscillations during a geomagnetic excursion. Proceedings of the National Academy of Sciences, USA. 10.1073/pnas.1720404115.
[2]Li, J.X., Yue, L.P., Roberts, A.P., Hirt, A.M., Pan, F., Guo, L., Xu, Y., Xi, R.G., Guo, L., Qiang, X.K., Gai,CC, Jiang ZX, Liu, Q., 2018. Global cooling and enhanced Eocene Asian mid-latitude interior aridity. Nature Communications 9, 3026.
[3]Cao, W., Jiang ZX, Gai, C., Barrón, V., Torrent, J., Zhong, Y. and Liu, Q., 2022. Re-Visiting the Quantification of Hematite by Diffuse Reflectance Spectroscopy. Minerals, 12(7): 872.
[4]Jiang, X.D., Zhao, X.Y., Zhao, X., Jiang, Z.X., Chou, Y.M., Zhang, T.W., Yang, X.Q. and Liu, Q.S., 2021. Quantifying Contributions of Magnetic Inclusions Within Silicates to Marine Sediments: A Dissolution Approach to Isolating Volcanic Signals for Improved Paleoenvironmental Reconstruction. Journal of Geophysical Research: Solid Earth, 126(10): e2021JB022680.
[5]Roberts, A.P., Zhao, X., Hu, P., Abrajevitch, A., Chen, Y.H., Harrison, R.J., Heslop, D., Jiang, Z.X., Li, J. and Liu, Q., 2021. Magnetic domain state and anisotropy in hematite (α‐Fe2O3) from first‐order reversal curve diagrams. Journal of Geophysical Research: Solid Earth: e2021JB023027.
[6]Hu PX, Jiang ZX, Liu QS, Heslop D, Roberts AP, Torrent J, and Barrón V, 2016. Estimating the concentration of aluminum substituted hematite and goethite using diffuse reflectance spectrometry and rock magnetism: feasibility and limitations. Journal of Geophysical Research, 121, doi:10.1002/2015JB012635.
[7]Cao L, Jiang ZX, Du YH, Yin XM, Xi SB, Wen W, Roberts AP, Wee TS, Xiong YM, Liu QS and Gao XY,2017. Origin of Magnetism in Hydrothermally Aged 2-Line Ferrihydrite Suspensions. Environmental Science & Technology, 51(5): 2643-2651.
[8]Gai, C., Liu, Q., Roberts, A.P., Chou, Y., Zhao, X., Jiang, Z. and Liu, J., 2020. East Asian monsoon evolution since the late Miocene from the South China Sea. Earth and Planetary Science Letters, 530: 115960.
[9]Zhao, X., Fujii, M., Suganuma, Y., Zhao, X. and Jiang, Z., 2018. Applying the Burr Type XII Distribution to Decompose Remanent Magnetization Curves. Journal of Geophysical Research, 123(10): 8298-8311.
[10]Liu QS, Chunsheng Jin, Pengxiang Hu, Jiang ZX, Kunpeng Ge, Roberts Andrew P., 2015. Magnetostratigraphy of Chinese loess–paleosol sequences, Earth-Science Reviews, 150: 139-167
[11]Zhong, Y., Chen, Z., Hein, J.R., González, F.J., Jiang, Z., Yang, X., Zhang, J., Wang, W., Shi, X., Liu, Z. and Liu, Q., 2020. Evolution of a deep-water ferromanganese nodule in the South China Sea in response to Pacific deep-water circulation and continental weathering during the Plio-Pleistocene. Quaternary Science Reviews, 229: 106106.
[12]Zhou, Z., Li, S., Guo, L., Li, X., Jiang, Z., Liu, Y., Li, Y., Wang, G., Lan, H. and Guo, R., 2019. Palaeomagnetic assessment of tectonic rotation in Northeast Asia:implications for the coupling of intracontinental deformation and mantle convection. International Geology Review: 1-23.
[13]Roberts, A.P., Tauxe, L., Heslop, D., Zhao, X., Jiang ZX, 2018. A Critical Appraisal of the ‘Day’ Diagram. Journal of Geophysical Research 123, 2618-2644.
[14]Jin, C., Liu, Q., Liang, W., Roberts, A.P., Sun, J., Hu, P., Zhao, X., Su, Y., Jiang ZX, Liu, Z., 2018. Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and its tectonic implications for India–Eurasia collision and Tibetan Plateau deformation. Earth and Planetary Science Letters 486, 41-53.
[15]Liu ZF, Ma J, Wei G, Liu QS, Jiang ZX, Ding X, Peng S, Ouyang, TP, 2017. Magnetism of a red soil core derived from basalt, northern Hainan Island, China: volcanic ash vs pedogenesis. Journal of Geophysical Research 122, 1677-1696.
[16]Roberts, A.P., Zhao, X., Heslop, D., Abrajevitch, A., Chen, Y.-H., Hu, P.X., Jiang, Z.X., Liu, Q.S. and Pillans, B.J., 2020. Hematite (α-Fe2O3) quantification in sedimentary magnetism: limitations of existing proxies and ways forward. Geoscience Letters, 7:8.
[17]Ao H, Dekkers MJ, Roberts AP, Rohling EJ, An Z, Liu X, Jiang ZX, Qiang XK, Xu Y, Chang H, 2017. Mineral magnetic record of the Miocene-Pliocene climate transition on the Chinese Loess Plateau, North China. Quaternary Research, 1-10.
[18]Jin CS, Liu QS, Hu PX, Jiang ZX, Li CG, Han P, Yang H, Liang WT, 2016. An integrated natural remanent magnetization acquisition model for the Matuyama-Brunhes reversal recorded by the Chinese loess. Geochemistry, Geophysics, Geosystems, doi: 10.1002/2016GC006407.
[19]Oliva-Urcia, B., A. Muñoz, J. Larrasoaña, A. Luzón, A. Pérez, Á. González, Jiang ZX, Q. Liu, and T. Román-Berdiel, 2016. Response of alluvial systems to Late Pleistocene climate changes recorded by environmental magnetism in the Añavieja Basin (Iberian Range, NE Spain). Geologica Acta, 14, 139-154.
[20]Liu, QS, C. Zhang, J. Torrent, V. Barrón, P. Hu, Jiang ZX, and Z. Duan, 2016. Factors controlling magnetism of reddish brown soil profiles from calcarenites in Southern Spain: Dust input or in-situ pedogenesis? Frontiers in Earth Science, 4, 1-12.
[21]Claudio Colombo, Giuseppe Palumbo, Erika Di Iorio, Filippo Russo, Fabio Terribile, Jiang ZX, Qingsong Liu, 2016. Soil development in a Quaternary fluvio-lacustrine paleosol sequence in Southern Italy, Quaternary International, 96, 1623-32.
[22]Su YL, Guoqiang Chu, Qingsong Liu, Jiang ZX, Xing Gao, Haberzettl, Torsten, 2015. A 1400 year environmental magnetic record from varved sediments of Lake Xiaolongwan (Northeast China) reflecting natural and anthropogenic soil erosion, Geochemistry, Geophysics, Geosystems, 16(9): 3053-3060
[23]Liu QS, Youbin Sun, Xiaoke Qiang, Ryuji Tada, Pengxiang Hu, Zongqi Duan, Jiang ZX, Jianxing Liu , Kai Su, 2015. Characterizing magnetic mineral assemblages of surface sediments from major Asian dust sources and implications for the Chinese loess magnetism, Earth Planets and Space, 6(17):1-13
[24]Claudio Colombo, Giuseppe Palumbo, Erika Di Iorio, Xin Song, Jiang ZX, Qingsong Liu, Ruggero Angelico, 2015. Influence of hydrothermal synthesis conditions on size, morphology and colloidal properties of Hematite nanoparticles, Nano-Structures & Nano-Objects, 2:19-27
[25]Kai Su, Qingsong Liu, Jiang ZX, Zongqi Duan, 2015. Mechanism of magnetic property changes of serpentinites from ODP Holes 897D and 1070A, Science in China, 58(5): 815-829
[26]Liu JX, Shi XF, Liu QS, Ge SL, Liu YG, Yao ZQ, Zhao QL, Jin CS, Jiang ZX, Shengfa Liu, Shuqing Qiao, Xiaoyan Li, Chuanshun Li, Chunjuan Wang, 2014. Magnetostratigraphy of a greigite-bearing core from the South Yellow Sea: Implications for remagnetization and sedimentation, Journal of Geophysical Research, doi: 10.1002/2014JB011206
[27]Jeong D, Yu YJ, Liu QS, Jiang ZX, Koh GW, Koh DC, 2013. Geomagnetic field intensity determination from pleistocene trachytic lava flows in Jeju Geopark, Geochemistry, Geophysics, Geosystems, DOI: 10.1002/2013GC005028
[28]Liu QS, Larrasoaña JC, Torrent J, Roberts AP, Rohling EJ, Liu ZF, and Jiang ZX, 2012. New constraints on climate forcing and variability in the circum-Mediterranean region from magnetic and geochemical observations of sapropels S1, S5 and S6, Palaeogeography, Palaeoclimatology, Palaeoecology, 333-334, 1-12.
[29]Bailey I., Liu QS, Swann GEA, Jiang ZX, Sun YB, Zhao X, Roberts AP., 2011. Aeolian dust fertilization and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation, Earth and Planetary Science Letters, 307, 253-265.
[30]Liu QS, Hu PX, Torrent J, Barrón V, Zhao XY, Jiang ZX, Su YL, 2010. Environmental magnetic study of a Xeralf chronosequence in northwestern Spain: indications for pedogenesis, Palaeogeography, Palaeoclimatology, Palaeoecology,293, 144-156.
[31]Liu QS, Torrent J, Morrás H, Hong A, Jiang ZX, Su YL, 2010. Superparamagnetism of two modern soils from the northeastern Pampean region, Argentina, and its paleoclimatic indications, Geophysical Journal International, 183, 695-705.
[32]董靓雯, 姚政权, 石学法, 姜兆霞,刘青松, 2018. 渤海BH08孔磁学参数变化机制与环境指示. 地球物理学报, 61(11): 4530-4544.
[33]王琬璋, 周良勇, 段宗奇, 姜兆霞, 刘建兴,刘青松, 2019. 现代黄河三角洲沉积物磁性地层年代框架及环境磁学研究.地球物理学报, 062(005): 1772-1788.