Your browser does not support the HTML5 canvas tag. Your browser does not support the HTML5 canvas tag. Your browser does not support the HTML5 canvas tag.

学术活动

  • 首页  学术活动  海外名师讲堂
  • 海外名师讲堂第一百三十六讲:美国加州大学洛杉矶分校李刚教授学术讲座:A new joint model of a longitudinal outcome and a competing risks time-to-event outcome

    作者:发布时间:2023-06-28来源:中国海洋大学 字号:


    一、主讲人介绍: 

    李刚教授是美国加州大学洛杉矶分校(UCLA)生物统计系和计算医学系教授,Jonsson综合癌症中心生物统计部主任。他是国际数理统计学会(IMS)、美国统计学会(ASA)、英国皇家统计学会(RSS)和国际统计学会(ISI)会士。也是Electronic Journal Statistics期刊的主编(2022-2024)。此外,他还担任泛华统计协会主席(2022-2024)。研究领域包括生存分析、纵向数据分析、高维数据分析、临床试验和大规模电子健康记录(EHR)和生物银行数据的高性能统计计算。李刚教授在这些领域做出了重大贡献,并与人合著了三本研究专著。此外,他的研究成果已发表150多篇论文,其中许多论文发表在国际顶尖期刊上,如Annals of Statistics, Journal of the American Statistical Association, and Journal of the Royal Statistical Society-B等。他曾主持多项美国国立卫生研究院(NIH)和美国国家科学基金会(NSF)基金。

     

    二、讲座信息

    Recent discoveries have emphasized the importance of within-subject (WS) visit-to-visit variability of longitudinal biomarkers as significant risk factors for health outcomes. This talk introduces a novel joint model that incorporates a longitudinal biomarker with heterogeneous WS variability and a competing risks time-to-event outcome. The proposed model provides a valuable framework for testing heterogeneity in WS variability, exploring the association between WS variability and survival outcomes, and enabling dynamic prediction of survival by considering both the individual mean and WS variability of the biomarker. We present an expectation-maximization algorithm for semiparametric maximum likelihood estimation, along with a profile-likelihood method for standard error estimation and inference. Moreover, we have developed efficient computational algorithms specifically tailored for analyzing biobank-scale data with tens of thousands of subjects. Through simulation results, we demonstrate the advantages of our method over traditional joint models. To illustrate the practical implications of our approach, we apply it to the Multi-Ethnic Study of Atherosclerosis (MESA) data, yielding intriguing findings. 

    讲座时间:202374日(星期二) 9:30-10:30

    讲座地点:数学院424会议室

     

    欢迎大家积极参加!

     

    三、主办单位

    数学科学学院

    国际合作与交流处

    2023628


    文:
    图:
    返回列表
    Baidu
    map